Compiler

Lec O7/

___]

Book

Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

Compilers

Principles, Techniques, & Tools

(

i Second Edition

ge,
2,
~ Symbax .
“nRirectoy
“elation
%
-

-
RN

£

Alfred V. Aho
Monica S. Lam
Ravi Sethi

Jeffrey D. Ullman

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha University staff SeM@ioms:Ahmed Hassan Ahmed Abu El Atta (
Beakin Daliait You are in:Home/Courses/Compilers Back To Courses &~ o
enha Universt . [o
Ass. Lect. Ahmed Hassan Ahmed Abu El Atta :: Course Details: T
Home Compilers .
At ils add course | edit course
| adi Comp"ers @
- @
Eavel Undergraduate !
Courses l o
Publications Last year taught 2018
Inlinks(Competition) =
Course description Not Uploaded 8
Theses '?
-
Reports .
Course password &
Published books @
Workshops / Conferences [/ .
| Course files 29d fies ok
Supervised PhD)
Supervised MSc Course URLS add URLs
| £
Supervised Projects =
Course assignments add assianments z
Education ’
Course Exams add exams | q
L Kill add exams
T &Model Answers | (\-1{
| eul
Academic Positions i
Administrative Positions

Syntax Analysis

PART IV

___]

Bottom-Up Parsing

A bottom-up parse corresponds to the construction
of a parse tree for an input string beginning at the

leaves (the bottom) and working up towards the
root (the top) .

Bottom-Up Parsing (Cont.)

d + id F % id T % 1d T = F T E
A | | /1\ |
id F F id T # F T
1 |] /1N
id id ll? id il"*ll?
id ll? id
id

d*id>F*id>T*Id>T*F>T->E

E=>T=>T*F=>T*id=>F*id=>id *id

Handle Pruning

a "handle" is a substring that matches the body of a
production, and whose reduction represents one step along
the reverse of a rightmost derivation.

RIGHT SENTENTIAL FORM | HANDLE | REDUCING PRODUCTION

id; *1d, id; F—id
F+1d, F T—= F

T *1d, id, F'—id

T+ F T+ F E—=T % F

S
Zi\
7\
) 3 w

A handle A — 3 in the parse tree far ofw

Shift-Reduce Parsing

Shift-reduce parsing is a form of bottom-up parsing
in which a stack holds grammar symbols and an
input buffer holds the rest of the string to be

parsed.

The handle always appears at the top of the stack
just before it is identified as the handle.

Shift-Reduce Parsing(Cont.)

1. Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right end of the string to be reduced must be at the top of
the stack. Locate the left end of the string within the stack and decide
with what nonterminal to replace the string.

3. Accept. Announce successful completion of parsing.

4. Error. Discover a syntax error and call an error recovery routine.

Example

STACK INPUT ACTION

$ idl * idg $ shift

$id; #ido $ reduce by F' — id

b F *id2 $ reduce by T — F
8T ¥idy § shift

$T * id; § shift

$T = id, $ reduce by F' — id
$T = I $ reduce by T =T x F
$T $ reduce by E - T
$E $ accept

BN
1 14

LR Parsing: Simple LR

LR(k) parsing;
> the "L" is for left-to-right scanning of the input,
o the "R" for constructing a rightmost derivation in
reverse, and

° the k for the number of input symbols of lookahead
that are used in making parsing decisions.

The cases k=0 or k =1 are of practical interest, and
we shall only consider LR parsers with k < 1 here.

When (k) is omitted, k is assumed to be 1.

LR(O) Item

An LR(0) item of G is a production of G with the dot
at some position of the body:
> For A->XYZ we have following items
o A->.XYZ
o A->X.YZ
o A->XY.Z
o A->XYZ.

° |n a state having A->.XYZ we hope to see a string derivable
from XYZ next on the input.

> The production A->€ generates only one item, A -> .

Closure of Item Sets

If | is a set of items for a grammar G, then Closure(l)
is the set of items constructed from | by the two
rules:

1. Initially, add every item in I to CLOSURE(I).

2. If A— a-Bf3is in CLOSURE(I) and B — « is a production, then add the
item B — -y to CLOSURE([), if it is not already there. Apply this rule
until no more new items can be added to CLOSURE(T]).

LR(O) Automaton

-+

- T:

T

E—E+.T

Ilﬂ-

T—=Txs F-

Is

f.:‘—h‘i-‘~+T:|I

F(E-)

Y

I
F=(E)

Bl
111

To construct the canonical LR(O)
collection for a grammar, we define an

auimented irammar

Augmented Grammar

If G is a grammar with start symbol S, then G', the
augmented grammar for G, is G with a new start
symbol S' and production S'—S

The purpose of this new starting production is to
indicate to the parser when it should stop parsing
and announce acceptance of the input.

That is, acceptance occurs when and only when the
parser is about to reduce by S'-S.

Example

E - E+T|T E'

T - Tx«F | F »E
T

F = (E) | id
E

.~

L4 dd

E

E+T | T
T+«F | F
(B) | id

Example

LR(O) Example
S— aSb | aSc | db

Add S — S

Then start with S’ — .S

